Approximating Fixed Points by a Two-Step Iterative Algorithm
نویسنده
چکیده
In this paper, we introduce a two-step iterative algorithm to prove a strong convergence result for approximating common fixed points of three contractive-like operators. Our algorithm basically generalizes an existing algorithm..Our iterative algorithm also contains two famous iterative algorithms: Mann iterative algorithm and Ishikawa iterative algorithm. Thus our result generalizes the corresponding results proved for the above three iterative algorithms to a class of more general operators. At the end, we remark that nothing prevents us to extend our result to the case of the iterative algorithm with error terms. Keywords—Contractive-like operator, iterative algorithm, fixed point, strong convergence.
منابع مشابه
A new one-step iterative process for approximating common fixed points of a countable family of quasi-nonexpansive multi-valued mappings in CAT(0) spaces
In this paper, we propose a new one-step iterative process for a countable family of quasi-nonexpansive multi-valued mappings in a CAT(0) space. We also prove strong and $Delta$-convergence theorems of the proposed iterative process under some control conditions. Our main results extend and generalize many results in the literature.
متن کاملApproximating fixed points for nonexpansive mappings and generalized mixed equilibrium problems in Banach spaces
We introduce a new iterative scheme for nding a common elementof the solutions set of a generalized mixed equilibrium problem and the xedpoints set of an innitely countable family of nonexpansive mappings in a Banachspace setting. Strong convergence theorems of the proposed iterative scheme arealso established by the generalized projection method. Our results generalize thecorresponding results...
متن کاملApproximating common fixed points of Presić-Kannan type operators by a multi-step iterative method
The existence of coincidence points and common fixed points for operators satisfying a Presić-Kannan type contraction condition in a metric spaces setting is proved. A multi-step iterative method for constructing the common fixed points is also provided.
متن کاملAn Explicit Viscosity Iterative Algorithm for Finding Fixed Points of Two Noncommutative Nonexpansive Mappings
We suggest an explicit viscosity iterative algorithm for finding a common element in the set of solutions of the general equilibrium problem system (GEPS) and the set of all common fixed points of two noncommuting nonexpansive self mappings in the real Hilbert space.
متن کاملConvergence results: A new type iteration scheme for two asymptotically nonexpansive mappings in uniformly convex Banach spaces
In this article, we introduce a new type iterative scheme for approximating common fixed points of two asymptotically nonexpansive mappings is defined, and weak and strong convergence theorem are proved for the new iterative scheme in a uniformly convex Banach space. The results obtained in this article represent an extension as well as refinement of previous known resu...
متن کامل